Higher order numerical methods for solving fractional differential equations
نویسندگان
چکیده
منابع مشابه
Higher order numerical methods for solving fractional differential equations
In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0 < α < 1. The order of convergence of the numerical method is ...
متن کاملComparing Numerical Methods for Solving Nonlinear Fractional Order Differential Equations
This paper is a result of comparison of some available numerical methods for solving nonlinear fractional order ordinary differential equations. These methods are compared according to their computational complexity, convergence rate, and approximation error. The present study shows that when these methods are applied to nonlinear differential equations of fractional order, they have different ...
متن کاملA Numerical Method for Solving Fuzzy Differential Equations With Fractional Order
In this paper we present a numerical method for fuzzy differential equation of fractional order under gH-fractional Caputo differentiability. The main idea of this method is to approximate the solution of fuzzy fractional differential equation (FFDE) by an implicit method as corrector and explicit method as predictor. This method is tested on numerical examples.
متن کاملComparison of acceleration techniques of analytical methods for solving differential equations of integer and fractional order
The work addressed in this paper is a comparative study between convergence of the acceleration techniques, diagonal pad'{e} approximants and shanks transforms, on Homotopy analysis method and Adomian decomposition method for solving differential equations of integer and fractional orders.
متن کاملLegendre Wavelets for Solving Fractional Differential Equations
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BIT Numerical Mathematics
سال: 2013
ISSN: 0006-3835,1572-9125
DOI: 10.1007/s10543-013-0443-3